На главную
Физика - одна из самых удивительных наук! Физика столь интенсивно развивается, что даже лучшие педагоги сталкиваются с большими трудностями, когда им надо рассказать о современной науке. Данный ресурс поможет эффективно и интересно изучать физику. Учите физику!
   

Обучение и материалы
Физический справочник
Формулы по физике
Шпаргалки по физике
Энциклопедия
Репетиторы по физике
Работа для физиков
Быстрый устный счет
Виртуальные лабораторные
Опыты по физике
ЕГЭ онлайн
Онлайн тестирование
Ученые физики
Необъяснимые явления
Ваша реклама на сайте
Разное
Контакты
Спецкурс
Фейнмановские лекции

В мире больших скоростей

Введение в теорию относительности

Лекции по биофизике
Лекции по ядерной физике
Ускорение времени...
Лазеры
Нанотехнологии
Книги
полезное
Смешные анекдоты о физике
Готовые шпоры по физике
Физика в жизни
Ученые и деньги
Нобелевские лауреаты
Фото
Видео
Карта сайта
На заметку
Если вам понравился сайт, предлагаем разместить нашу кнопку
Кнопка сайта All-fizika.com
Дополнительно
Компьютерные программы
по физике
Программы по физике


Физика и юмор
Физика и юмор


Онлайн тестирование
по физике
Онлайн тестирование по физике



-









Энергия постоянных токов

Зная, что Uполн = —Uмех, используем этот факт, чтобы найти истинную энергию постоянных токов в магнитных полях. Начать можно с истинной энергии небольшой токовой петельки. Обозначая Uполн просто через U, напишем

Маленькое изображение
 

Маленькое изображениеХотя эту энергию мы подсчитали только для плоской прямоугольной петли, все это верно и для плоской петельки произвольной формы.
 
Энергию контура произвольной формы можно найти, представив себе, что он состоит из небольших токовых петель. Скажем, имеется провод в форме петли Г (фиг. 15.4). Натянем на эту петлю поверхность S, а на ней наметим множество петелек, каждую из которых можно считать плоской. Если заставить ток / циркулировать по каждой петельке, то в итоге выйдет то же самое, как если бы ток шел только по петле Г, ибо токи на всех внутренних линиях взаимно уничтожатся. Система небольших токов физически не будет отличима от исходного контура, и энергия должна быть той же, т. е. должна быть равна сумме энергий всех петелек.
 
Если площадь каждой петельки Δа, то ее энергия равна /ΔaBn, где Вnкомпонента В, нормальная к Δа. Полная энергия равна

Маленькое изображение
 

В пределе, когда петли становятся бесконечно малыми, сумма превращается в интеграл, и

Маленькое изображение
 

где n — единичная нормаль к da.
 
Если мы положим В = vxA, то   поверхностный   интеграл можно будет связать с контурным (по теореме Стокса):

Маленькое изображение
 

где ds — линейный  элемент вдоль Г. Итак, мы получили энергию контура произвольной формы:

Маленькое изображение
 

В этом выражении А обозначает, конечно, векторный потенциал, возникающий из-за токов (отличных от тока / в проводе), которые создают поле   В   близ провода.
 
Далее, любое распределение постоянных токов можно считать состоящим из нитей, идущих вдоль тех линий, по которым течет ток. Для любой пары таких контуров энергия дается выражением (15.19), где интеграл взят вокруг одного из контуров, а векторный потенциал А создан другим контуром. Полная энергия получается сложением всех таких пар. Если вместо того, чтобы следить за парами, мы полностью просуммируем по всем нитям, то каждую энергию мы засчитаем дважды (такой же эффект мы наблюдали в электростатике), и полную энергию можно будет представить в виде

Маленькое изображение
 

Это соответствует полученному для электростатической энергии выражению

Маленькое изображение
 

Значит, мы можем считать А, если угодно, своего рода потенциальной энергией токов в магнитостатике. К сожалению, это представление не очень полезно, потому что оно годится только для статических полей. B действительности, если поля со временем меняются, ни выражение (15.20), ни выражение (15.21) не дают правильной величины энергии.



СМОТРИТЕ ТАКЖЕ:


Социальные комментарии Cackle


 
 
© All-Физика, 2009-2024
При использовании материалов сайта ссылка на www.all-fizika.com обязательна.