Физический энциклопедический словарь |
| А | Б | В | Г | Д | Е | Ж | З | И | К | Л | М | Н | О | П | Р | С | Т | У | Ф | Х | Ц | Ч | Ш | Щ | Э | Ю | Я | |
Лагранжа функцияЛагранжа функция, (кинетический потенциал), характеристическая функция L(qi, q`i, t) механической системы, выраженная через обобщённые координаты qi, обобщённые скорости q`i и время t. В простейшем случае консервативной системы Лагранжа функция равна разности между кинетической Т и потенциальной П энергиями системы, выраженными через qi и q`i, т. е. L=T(qi, q`i,t) -Пqi;. Зная Лагранжа функцию, можно с помощью наименьшего действия принципа составить дифференциальные уравнения движения механической системы.
Понятие «Лагранжа функции» распространяется также на системы с бесконечным числом степеней свободы — классические поля физические; при этом обобщёнными координатами и импульсами являются значения функции поля и их производные по времени в каждой точке пространства-времени. Как и в классической механике, посредством принципа наименьшего действия Лагранжа функция определяет для поля уравнения движения. Важным свойством Лагранжа функции является релятивистская инвариантность её плотности (величины Лагранжа функции в единице объёма поля) и другие свойства её симметрии. Каждой из симметрии соответствует закон сохранения некоторой физической характеристики. Так, неизменности относительно калибровочной симметрии соответствует сохранение заряда и т. д. (см.Сохранения законы).
|