Главная >> Фейнмановские лекции по физике >> Том 7 >> Глава 32. Показатель преломления плотного вещества Волны в диэлектрике
Теперь нам предстоит выяснить, какого сорта электромагнитные волны могут существовать в диэлектрическом веществе, где других зарядов, кроме тех, что связаны в атомах, нет. Таким образом, мы возьмем ρ = –V·P и j = ∂P/∂t. При этом уравнения Максвелла примут такой вид:
Мы можем решить эти уравнения, как делали это прежде. Начнем с применения к уравнению (32.19в) операции ротора:
Используя затем векторное тождество
и подставляя выражение для VxB из (32.19б), получаем
Используя уравнение (32.19а) для V·E, находим
Таким образом, вместо волнового уравнения мы теперь получили, что даламбертиан Е равен двум членам, содержащим поляризацию Р.
Однако Р зависит от Е, поэтому уравнение (32.20) все еще допускает волновые решения. Сейчас мы будем ограничиваться изотропными диэлектриками, т. е. Р всегда будет иметь то же направление, что и Е. Попробуем найти решение для волны, движущейся в направлении оси z. Электрическое поле при этом будет изменяться как e¡(ωt–kz). Предположим также, что волна поляризована в направлении оси х, т. е. что электрическое поле имеет только x-компоненту. Все это записывается следующим образом:
Вы знаете, что любая функция от (z—vt) представляет волну, бегущую со скоростью v. Показатель экспоненты в выражении (32.21) можно переписать в виде
так что выражение (32.21) представляет волну, фазовая скорость которой равна
В гл. 31 (вып. 3) показатель преломления n определялся нами из формулы
С учетом этой формулы (32.21) приобретает вид
Таким образом, показатель n можно определить, если мы найдем ту величину k, которая необходима, чтобы выражение (32.21) удовлетворяло соответствующим уравнениям поля, и затем воспользуемся соотношением
В изотропном материале поляризация будет иметь только x-компоненту; кроме того, Р не изменяется с изменением координаты х, поэтому V·P=0 и мы сразу же избавляемся от первого члена в правой стороне уравнения (32.20). Вдобавок мы считаем наш диэлектрик «линейным», поэтому Рх будет изменяться как е¡ωt и ∂2Px/∂t2 = –ω2Рx. Лапласиан же в уравнении (32.20) превращается просто в ∂2Ex/∂z2= –к2Ех, так что в результате получаем
Теперь на минуту предположим, что раз Е изменяется синусоидально, то Р можно считать пропорциональной Е, как в уравнении (32.5). (Позднее мы вернемся к этому предположению и обсудим его.) Таким образом, пишем
При этом Ех выпадает из уравнения (32.23), и мы находим
Мы получили, что волна вида (32.21) с волновым числом к, задаваемым уравнением (32.24), будет удовлетворять уравнениям поля. Использование же выражения (32.22) для показателя n дает
Сравним эту формулу с тем, что получилось у нас для показателя преломления газа (гл. 31, вып. 3). Там мы нашли уравнение (31.19), которое тогда имело вид
Формула (32.25) после подстановки α из (32.6) дает
|
Что здесь нового? Во-первых, появился новый член ¡γω, возникший в результате учета поглощения энергии в осцилляторах. Во-вторых, слева вместо n теперь стоит n2 и, кроме того, отсутствует дополнительный множитель 1/2. Но заметьте, что если значение N достаточно мало, так что n близок к единице (как это имеет место в газе), то выражение (32.27) говорит,что n2 равен единице плюс некое малое число, т. е. n2=1+ε. При этом условии мы можем написать, что n=√1+ε ≈1+ ε/2, и оба выражения оказываются эквивалентными. Таким образом, наш новый метод дает для газа тот же самый, найденный нами ранее результат.
Теперь можно надеяться, что выражение (32.27) должно давать показатель преломления и для плотных материалов. Но по некоторым причинам оно нуждается в модификации. Во-первых, при выводе этого уравнения предполагалось, что поляризованное поле, действующее на каждый из атомов,— это поле Ех. Однако такое предположение неверно, поскольку в плотном материале существуют и другие поля, создаваемые соседними атомами, которые могут быть сравнимы с Ех. Аналогичную задачу мы уже рассматривали при изучении статических полей в диэлектрике (см. гл. 11, вып. 5). Вы, вероятно, помните, что мы нашли поле, действующее на отдельный атом; представив его сидящим в сферической полости в окружающем диэлектрике. Поле в такой полости (мы назвали его локальным) увеличивается по сравнению со средним полем Е на величину Р/Зε0. (Не забудьте, однако, что этот результат, строго говоря, справедлив только для изотропного материала, а также в случае кубического кристалла.)
Те же рассуждения верны и для электрического поля в волне, но до тех пор, пока длина ее много больше расстояния между атомами. При таком ограничении
|
Именно это локальное поле следует использовать вместо Е в (32.8), т. е. это выражение должно быть переписано следующим образом:
Подставляя теперь Елок из формулы (32.28), находим
Иными словами, Р для плотного материала все еще пропорциональна Е (для синусоидального поля). Однако константа пропорциональности будет уже ε0Nα/ [1 — (Nα/З)], а не ε0Nα, как раньше. Таким образом, нам нужно поправить формулу (32.25):
Более удобно переписать это в виде
который алгебраически эквивалентен прежнему. Это и есть известная формула Клаузиуса — Моссотти.
В плотном материале возникает и другое усложнение. Поскольку атомы расположены слишком тесно, они сильно взаимодействуют друг с другом. Поэтому внутренние гармоники осцилляции изменяются. Собственные частоты атомных осцилляции размазываются этими взаимодействиями и обычно весьма сильно подавляются ими, а коэффициент трения становится очень большим. Таким образом, все ωо и γ твердого вещества будут другими, чем для свободных атомов. С этой оговоркой мы все-таки можем представлять α, по крайней мере приближенно, уравнением (32.7), так что
|
Наконец, последнее усложнение. Если плотный материал представляет собой смесь нескольких компонент, то каждая из них дает свой вклад в поляризацию. Полная α будет суммой вкладов различных компонент смеси [за исключением неточности приближения локального поля в упорядоченных кристаллах, т. е. выражения (32.28) —эффекты, которые мы обсуждали при разборе сегнетоэлектриков]. Обозначая через Nj число атомов каждой компоненты в единице объема, мы должны заменить формулу (32.32) следующей:
где каждая αj- будет определяться выражением типа (32.7). Выражение (32.34) завершает нашу теорию показателя преломления. Величина 3(n2–1)/(n2+2) задается комплексной функцией частоты, каковой является средняя атомная поляризуемость α(ω). Точное вычисление α(ω) (т. е. нахождение fk, γk и ωok) для плотного вещества — одна из труднейших задач квантовой механики. Это было сделано только для нескольких особенно простых веществ.
СМОТРИТЕ ТАКЖЕ:
Социальные комментарии Cackle
|