На главную
Физика - одна из самых удивительных наук! Физика столь интенсивно развивается, что даже лучшие педагоги сталкиваются с большими трудностями, когда им надо рассказать о современной науке. Данный ресурс поможет эффективно и интересно изучать физику. Учите физику!
   

Обучение и материалы
Физический справочник
Формулы по физике
Шпаргалки по физике
Энциклопедия
Репетиторы по физике
Работа для физиков
Быстрый устный счет
Виртуальные лабораторные
Опыты по физике
ЕГЭ онлайн
Онлайн тестирование
Ученые физики
Необъяснимые явления
Ваша реклама на сайте
Разное
Контакты
Спецкурс
Фейнмановские лекции

В мире больших скоростей

Введение в теорию относительности

Лекции по биофизике
Лекции по ядерной физике
Ускорение времени...
Лазеры
Нанотехнологии
Книги
полезное
Смешные анекдоты о физике
Готовые шпоры по физике
Физика в жизни
Ученые и деньги
Нобелевские лауреаты
Фото
Видео
Карта сайта
На заметку
Если вам понравился сайт, предлагаем разместить нашу кнопку
Кнопка сайта All-fizika.com
Дополнительно
Компьютерные программы
по физике
Программы по физике


Физика и юмор
Физика и юмор


Онлайн тестирование
по физике
Онлайн тестирование по физике



-









Электромагниты

Маленькое изображениеПоговорим теперь о практической стороне дела, которая немного более сложна. Предположим, что мы имеем электромагнит стандартной формы, изображенный на фиг. 36.10. Он состоит из С-образного железного ярма, на которое намотано много витков провода. Чему равно магнитное поле В в зазоре?

Маленькое изображениеЕсли ширина зазора мала по сравнению со всеми другими размерами, то в качестве первого приближения мы можем считать, что линии В образуют замкнутые кривые так же, как это происходит и в обычном торе. Они выглядят примерно так, как показано на фиг.   36.11,а. Они стремятся вылезть из зазора, но если он узок, то эффект этот очень мал. Предположение о постоянстве потока В через любое поперечное сечение ярма будет довольно хорошим приближением. Если поперечное сечение ярма меняется равномерно и если мы пренебрежем любыми краевыми эффектами на зазоре или на углах, то можно говорить, что по всей окружности ярма В однородно.

Маленькое изображениеПоле В в зазоре будет по величине тем же самым. Это следует из уравнений (36.16). Представьте себе замкнутую поверхность S (см. фиг. 36.11,б), одна грань которой находится в зазоре, а другая — в железе. Полный поток поля В через эту поверхность должен быть равен нулю. Обозначая через В1 величину поля в зазоре, а через В2 — величину поля в железе, мы  видим, что

Маленькое изображение
 

а поскольку А1 = А2, то отсюда следует, что В1 = В2.
 
Посмотрим теперь на H. Мы снова можем воспользоваться уравнением (36.19), взяв криволинейный интеграл по контуру Г (см. фиг. 36.11,б). Как и прежде, правая часть равна NI— произведению числа витков на ток. Однако теперь H в железе и в воздухе будет различным. Обозначая через Н2 поле в железе, а через l2 — длину пути по окружности ярма, мы видим, что эта часть кривой дает вклад в интеграл Н2l2. Если же поле в зазоре равно H1 а ширина его l1 то вклад зазора оказывается равным   H1l1.  Таким образом, получаем

Маленькое изображение
 

Но это еще не все. Нам известно еще, что намагниченность в воздушной щели пренебрежимо мала, так что В11. А так как В12то  уравнение  (36.26) принимает вид

Маленькое изображение
 

Маленькое изображениеОстаются еще два неизвестных. Чтобы найти В2 и Н2, необходимо еще одно соотношение, которое связывает В с Н в железе. Если можно приближенно считать,что В2=μН2, то уравнение разрешается алгебраически. Рассмотрим более общий случай, для которого кривая намагничивания железа имеет вид, изображенный на фиг. 36.8. Единственное, что нам нужно,— это найти совместное решение этого функционального соотношения с уравнением (36.27). Его можно найти, строя зависимость (36.27) на одном графике с кривой намагничивания, как это сделано на фиг. 36.12. Точки, где эти кривые пересекутся, и будут нашими  решениями.
 
Для данного тока / уравнение (36.27) описывается прямой линией, обозначенной />0 на фиг. 36.12. Эта линия пересекает ось Н (В2=0) в точке H2=NI/ε0c2I2 и имеет наклон  –l2/l1. Различные величины токов приводят просто к горизонтальному сдвигу этой линии. Из фиг. 36.12 мы видим, что при данном токе существует несколько различных решений, зависящих от того, каким образом вы получили их. Если вы только что построили магнит и включили ток Ι, то поле В2 (которое равно B1) будет иметь величину, определяемую точкой а. Если вы  сначала увеличили ток до очень большой величины, а затем понизили до /, то значение поля будет определяться точкой b. А если, увеличивая ток от большого отрицательного значения, вы дошли до /, то поле определяется точкой с. Поле в зазоре зависит от того, как вы поступали в  прошлом.
 
Если ток в магните равен нулю, то соотношение между В2 и Н2 в уравнении (36.27) изображается кривой, обозначенной /=0 на фиг. 36.12. Здесь опять возможны различные решения. Если вы первоначально «насытили» железо, то в магните может сохраниться значительное остаточное поле, определяемое точкой d. Вы можете снять обмотку и получить постоянный магнит. Нетрудно понять, что для хорошего постоянного магнита необходим материал с широкой петлей гистерезиса. Такую очень широкую петлю имеют специальные сплавы, подобные Алнико V.



СМОТРИТЕ ТАКЖЕ:


Социальные комментарии Cackle


 
 
© All-Физика, 2009-2024
При использовании материалов сайта ссылка на www.all-fizika.com обязательна.