Главная >> Фейнмановские лекции по физике >> Том 9 >> Глава 11. Распространение в кристаллической решетке Рассеяние на нерегулярностях решетки
Теперь мы хотим рассмотреть одиночный электрон в неидеальном кристалле. Наш первоначальный анализ привел к выводу, что у идеальных кристаллов и проводимость идеальна, что электроны могут скользить по кристаллу, как по вакууму, без трения. Одной из самых важных причин, способных прекратить вечное движение электрона, является несовершенство кристалла, какая-то нерегулярность в нем. Допустим, что где-то в кристалле не хватает одного атома, или предположим, что кто-то поставил на место, предназначенное для какого-то атома, совсем не тот атом, какой положено, так что в этом месте все совсем не так, как в прочих местах. Скажем, другая энергия Е0 или другая амплитуда А. Как тогда можно будет описать все происходящее?
Для определенности вернемся к одномерному случаю и допустим, что атом номер «нуль» — это атом «загрязнения», «примеси» и у него совсем не такая энергия E0,как у других атомов. Обозначим эту энергию Е0 + F. Что же происходит? Для электрона, который достиг атома «нуль», есть какая-то вероятность того, что он рассеется назад. Если волновой пакет, мчась по кристаллу, достигает места, где все немного иначе, то часть его будет продолжать лететь вперед, а другая отскочит назад. Анализировать такой случай, пользуясь волновым пакетом, очень трудно, потому что все меняется во времени. С решениями в виде установившихся состояний работать много легче. Мы обратимся поэтому к стационарным состояниям; мы увидим, что их можно составить из непрерывных волн, состоящих из двух частей — пробегающей и отраженной. В случае трех измерений мы бы назвали отраженную часть рассеянной волной, потому что она разбегалась бы во все стороны.
Исходим из системы уравнений, похожей на (11.6), за одним исключением: уравнение при n = 0 не похоже на остальные. Пятерка уравнений при n = –2, –1, 0, +1 и +2 выглядит так:
|
Конечно, будут и другие уравнения при |n|>2. Они будут выглядеть так же, как (11.6).
Нам полагалось бы на самом деле для общности писать разные А, в зависимости от того, прыгает ли электрон к атому «нуль» или же от атома «нуль», но главные черты того, что происходит, вы увидите уже из упрощенного примера, когда все А равны.
Уравнение (11.10) по-прежнему будет служить решением для всех уравнений, кроме уравнения для атома «нуль» (для него оно не годится). Нам нужно другое решение; соорудим его так. Уравнение (11.10) представляет волну, бегущую в положительном направлении х. Волна, бегущая в отрицательном направлении х, тоже подошла бы в качестве решения. Мы бы написали
Самое общее решение уравнения (11.6) представляло бы собой сочетание волны вперед и волны назад:
Это решение представляет комплексную волну с амплитудой α, бегущую в направлении +х, и волну с амплитудой β, бегущую в направлении —х.
Теперь бросим взгляд на систему уравнений нашей новой задачи: на (11.28) плюс такие же уравнения для остальных атомов. Уравнения, куда входят аn с n≤—1, решаются формулой (11.29) при условии, что k оказывается связанным с E и постоянной решетки b соотношением
Физический смысл этого таков: «падающая» волна с амплитудой α приближается к атому «нуль» (или «рассеивателю») слева, а «рассеянная» или «отраженная» волна с амплитудой β бежит обратно, т. е. налево. Не теряя общности, можно положить амплитуду α падающей волны равной единице. Тогда амплитуда β будет, вообще говоря, комплексным числом.
То же самое можно сказать и о решениях аn при n≥1. Коэффициенты могут стать иными, так что следовало бы писать
Здесь γ — амплитуда волны, бегущей направо, а δ — амплитуда волны, приходящей справа. Мы хотим рассмотреть такой физический случай, когда вначале волна бежит только слева, и за рассеивателем (или атомом загрязнения) имеется только «прошедшая» волна. Будем поэтому искать решение, в котором δ=0. Стало быть, мы попытаемся удовлетворить всем уравнениям для аn, кроме средней тройки в (11.28), с помощью следующих пробных решений:
Положение, о котором идет речь, иллюстрируется фиг. 11.6.
Используя формулы (11.32) для а_1 и а+1, можно из средней тройки уравнений (11.28) найти а0 и два коэффициента β и γ. Таким образом, мы найдем полное решение. Надо решить три уравнения (полагая xn = nb):
Вспомните, что (11.30) выражает Е через k. Подставьте это значение Е в уравнения и учтите, что
Это уравнение сообщает нам, что прошедшая волна (γ) — это просто исходная падающая волна (1) плюс добавочная волна (β), равная отраженной. Это не всегда так, но при рассеянии на одном только атоме оказывается, что это так. Если бы у вас была целая группа атомов примеси, то величина, добавляемая к волне, бегущей вперед, не обязательно вышла бы такой же, как у отраженной волны.
Амплитуду β отраженной волны мы можем получить из среднего из уравнений (11.33); окажется, что
Мы получили полное решение для решетки с одним необычным атомом.
Вас могло удивить, отчего это проходящая волна оказалась «выше», чем падавшая, если судить по уравнению (11.34). Но вспомните, что β и γ — числа комплексные и что число частиц в волне (или, лучше сказать, вероятность обнаружить частицу) пропорционально квадрату модуля амплитуды. В действительности «сохранение числа электронов» будет выполнено лишь при условии
Попробуйте показать, что в нашем решении так оно и есть.
СМОТРИТЕ ТАКЖЕ:
Социальные комментарии Cackle
|