Главная >> Фейнмановские лекции по физике >> Том 9 >> Глава 17. Атом водорода и периодическая таблица Волновые функции водорода
Посмотрим же, что мы открыли. Состояния, которые удовлетворяют уравнению Шредингера для электрона в кулоновом поле, характеризуются тремя (причем целыми) квантовыми числами n, I, т. Угловое распределение амплитуды электрона может обладать только определенными формами, которые мы обозначим Yl,m. Они нумеруются числом I — квантовым числом полного момента количества движения и т — «магнитным» квантовым числом, которое может меняться от —I до +/. При каждой угловой конфигурации возможны различные радиальные распределения Fn,l (r) амплитуды электрона; они нумеруются главным квантовым числом n, которое может меняться от l+1 до ∞. Энергия состояния зависит только от n и растет с n.
Состояние наинизшей энергии, или основное, является s-состоянием. У него l=0, n=1 и т=0. Это «невырожденное» состояние: имеется только одно состояние с такой энергией, а волновая функция у него сферически симметрична. Амплитуда того, что электрон обнаружится, достигает максимума в центре и монотонно спадает с удалением от центра. Эту электронную амплитуду можно изобразить этаким комочком (фиг. 17.6,а).
Имеются и другие s-состояния, с большими энергиями; у них n=2, 3, 4, ... и l=0. Каждой энергии соответствует только одно состояние т=0, и все они сферически симметричны. Амплитуды этих состояний с ростом r один или несколько раз меняют знак. Имеется n—1 сферических узловых поверхностей, или мест, где ψ проходит через нуль. Например, 2s-состояние (l=0, n=2) выглядит так, как показано на фиг. 17.6, б. (Темные области указывают те места, где амплитуда велика, а знаки плюс и минус отмечают относительные фазы амплитуды.) Уровни энергии s-состояний показаны в первом столбце фиг. 17.7.
Затем бывают р-состояния с l=1. Для каждого n (n равно или больше 2) существует тройка состояний с одинаковой энергией, одно c m=+1, другое с т=0, третье с т= —1. Уровни энергии отмечены на фиг. 17.7. Угловые зависимости этих состояний приведены в табл. 17.1. Так, при m=0, если амплитуда положительна для углов θ, близких к нулю, то при углах θ, близких к 180°, она окажется отрицательной. Имеется узловая плоскость, совпадающая с плоскостью ху. При n>1 бывают также конические узловые поверхности. Амплитуда n=2, т=0 намечена на фиг. 17.6,в, а волновая функция n=3, т = 0 — на фиг. 17.6, г.
Могло бы показаться, что поскольку т дает, так сказать, «ориентацию» в пространстве, то должны наблюдаться еще такие же распределения, но с пиками вдоль оси х или вдоль оси у. Можно подумать, что это скорее всего состояния с m=+1 и с т= —1. Однако это не так! Но зато раз у нас есть тройка состояний с одинаковыми энергиями, то любая линейная комбинация из этой тройки тоже будет стационарным состоянием с той же энергией. Оказывается, что «x»-состояние (по аналогии с «z»-состоянием, или состоянием с m=0, см. фиг. 17.6, в) это линейная комбинация состояний с m=+1′ и с т=—1. Другая комбинация дает «y»-состояние. Точнее, имеется в виду, что состояния
|
если отнести их к своим осям, выглядят одинаково.
У d-состояний (l=2) для каждой энергии есть пять возможных значений т; наинизшей энергией обладает n=3. Уровни показаны на фиг. 17.7. Угловые зависимости усложняются. К примеру, состояния с m=0 обладают двумя коническими узловыми поверхностями, так что при переходе от северного полюса к южному волновая функция меняет фазы с + на — и обратно на +. Примерная форма амплитуды нарисована на фиг. 17.6,д и е для состояний с m=0 и n=3 и 4. И снова при больших n появляются конические узловые поверхности.
Мы не будем пытаться описывать другие последующие состояния. Подробное изложение волновых функций водорода вы найдете во многих книгах. Рекомендую вам особенно; L. Pauling, E.B.Wilson, Introduction to Quantum Mechanics, New York, 1935; R. B. L e i g h t о n, Principles of Modern Physics, New York, 1959. В этих книгах вы найдете графики некоторых функций и графическое изображение многих состояний.
Хотелось бы упомянуть об одном особом свойстве волновых функций при высших I: при l>0 амплитуды обращаются в центре в нуль. Ничего в этом удивительного нет, ведь электрону трудно иметь большой момент, когда плечо момента очень мало. По этой причине чем I больше, тем дальше амплитуды «отталкиваются» от центра. Если вы посмотрите, как радиальные функции F (r) меняются при малых гr, то из (17.53) окажется, что
|
Такая зависимость от r означает, что при больших I вам придется дальше отойти от r = 0, чтобы получить заметную амплитуду. Такое поведение, кстати, определяется членом с центробежной силой в радиальном уравнении, так что все это применимо к любому потенциалу, который при малых r меняется медленнее, чем 1/r2, а таково большинство атомных потенциалов.
СМОТРИТЕ ТАКЖЕ:
Социальные комментарии Cackle
|