Главная >> Фейнмановские лекции по физике >> Том 9 >> Глава 18. Операторы Момент количества движения
Для интереса рассмотрим еще одну операцию — операцию орбитального момента количества движения. В гл. 15 мы определили оператор Jz через Rz(φ) — оператор поворота на угол φ вокруг оси z. Рассмотрим сейчас систему, описываемую всего лишь одной-единственной волновой функцией ψ(r), которая является функцией одних только координат и не учитывает того факта, что спин у электрона должен быть направлен либо вверх, либо вниз. Это значит, что мы собираемся пока пренебречь внутренним моментом количества движения и намерены думать только об орбитальной части. Чтобы подчеркнуть различие, обозначим орбитальный оператор Lz и определим его через оператор поворота на бесконечно малый угол ε формулой
(напоминаем: это определение применимо только к состоянию |ψ>, у которого нет внутренних спиновых переменных, а есть только зависимость от координат r: х, у, z). Если мы взглянем на состояние |ψ> из новой системы координат, повернутой вокруг оси z на небольшой угол ε, то увидим новое состояние:
Если мы решили описывать состояние |ψ> в координатном представлении, т. е. с помощью его волновой функции ψ(r), то следует ожидать такого равенства:
Что же такое L? А вот что. Точка Р (х, у) в новой системе координат (на самом деле х′, у′, но мы убрали штрихи) раньше имела координаты х—εy и у+εх (фиг. 18.2).Поскольку амплитуда того, что электрон окажется в точке Р, не меняется от поворота системы координат, то можно писать
Это и есть наш ответ. Обратите, однако, внимание, что это определение эквивалентно такому:
Или, если вернуться к нашим квантовомеханическим операторам, можно написать
Эту формулу легко запомнить, потому что она похожа на знакомую формулу классической механики: это z-компонента векторного произведения
Одна из забавных сторон манипуляций с операторами заключается в том,что многие классические уравнения переносятся в квантовомеханическую форму. А какие нет? Ведь должны же быть такие, которые не получаются, потому что если бы все повторялось, то в квантовой механике не было бы ничего отличного от классической, не было бы новой физики.
Вот вам уравнение, которое отличается. В классической физике
А что в квантовой механике?
Подсчитаем это в x-представлении. Чтобы было видно, что мы делаем, приложим это к некоторой волновой функции ψ(z). Пишем
Вспомним теперь, что производные действуют на всё, что справа. Получаем
Ответ не нуль. Вся операция попросту равнозначна умножению на —h/i:
Если бы постоянная Планка была равна нулю, то квантовые и классические результаты стали бы одинаковыми и не пришлось бы нам учить никакой квантовой механики!
Отметим, что если два каких-то оператора А и В, взятые в сочетании
не дают нуля, то мы говорим, что «операторы не перестановочны», или «операторы не коммутируют». А уравнение наподобие (18.74) называется «перестановочным соотношением». Вы можете сами убедиться, что перестановочное соотношение для px и у (или коммутатор рх и у) имеет вид
Существует еще одно очень важное перестановочное соотношение. Оно относится к моментам количества движения. Вид его таков:
Если вы хотите приобрести некоторый опыт работы с операторами х и р, попробуйте доказать эту формулу сами.
Интересно заметить, что операторы, которые не коммутируют, можно встретить и в классической физике. Мы с этим уже сталкивались, когда говорили о поворотах в пространстве. Если вы повернете что-нибудь, например книжку, сперва на 90° вокруг оси х, а затем на 90° вокруг оси у, то получится совсем не то, что было бы, если бы сначала вы повернули ее на 90° вокруг оси у, а после на 90° вокруг оси х. Именно это свойство пространства и ответственно за уравнение (18.75).
СМОТРИТЕ ТАКЖЕ:
Социальные комментарии Cackle
|