Главная >> Лекции по ядерной физике 2.1. Основные типы нейтронных реакций в ядерном реакторе
Ядерной реакцией принято называть процесс и результат взаимодействия ядер с различными ядерными частицами (альфа-, бета-частицами, протонами, нейтронами, гамма-квантами и т.д.).
Для понимания физических процессов, происходящих в ядерном реакторе, наиболее важен класс нейтронных ядерных реакций, то есть реакций, инициируемых свободными нейтронами.
Нейтронные реакции - это процесс и результат взаимодействия нейтронов с атомными ядрами.
Нейтроны, входящие в состав атомных ядер, называют связанными, в отличие от нейтронов, перемещающихся в объёме среды вне ядер атомов, которые называют свободными. Именно они, эти свободные нейтроны, сталкиваясь в процессе своего пространственного перемещения с ядрами атомов среды и взаимодействуя с последними, вызывают различного рода нейтронные реакции.
Лёгкая осуществимость подавляющего большинства нейтронных реакций обусловлена электронейтральностью нейтронов, благодаря которой (в отличие от частиц с электрическим зарядом) они имеют возможность легко преодолевать энергетический барьер электростатического поля заряженного ядра, попадать в сферу действия его ядерного притяжения и взаимодействовать с нуклонами ядра, вызывая их кардинальную перестройку. Это и составляет суть нейтронных ядерных реакций.
Начнём с тривиального факта: всякая нейтронная реакция начинается с проникновения свободного нейтрона в объём ядра, в сферу диаметром порядка 10-13 см, в пределах которой действуют ядерные силы притяжения нуклонов.
Но устойчивое ядро, как отмечалось, может быть образовано не из любых произвольных количеств протонов и нейтронов, а в реальных комбинациях, которые соответствуют устойчивым ядрам, потенциальная энергия связанных нуклонов принимает не произвольные, а строго определённые значения.
Квантовая физика рассматривает ядро любого устойчивого атома как систему частиц (нуклонов), суммарная потенциальная энергия которых может принимать ряд строго определённых, присущих только этому ядру значений (энергетических уровней). И если в устойчивое ядро привносится извне дополнительная масса, энергия, или то и другое вместе, суммарная потенциальная энергия такого ядра в общем случае уже не будет соответствовать ни одному из присущих ему уровней устойчивости. А это значит, что образующееся в результате проникновения в него нейтрона составное ядро - ядро возбуждённое или неустойчивое.
Возбуждённое составное ядро (как и любая другая неустойчивая система в Природе) в таком состоянии длительно существовать не может и по мере возможностей стремится "скатиться" к ближайшему устойчивому энергетическому уровню, то есть - избавиться от избытка потенциальной энергии сверх ближайшего уровня устойчивости. Время пребывания составного ядра в возбужденном состоянии - величина порядка 10 -15, 10 -13 с.
Это естественное устремление возбуждённого составного ядра к устойчивому состоянию может быть реализовано различными способами. Рассмотрим их, поскольку от того, каким способом возбуждённое составное ядро устремляется к устойчивому состоянию, зависит конечный результат взаимодействия нейтрона с ядром, что и определяет тип нейтронной реакции.
Кратко охарактеризуем основные способы (каналы) превращения возбуждённого составного ядра в более устойчивые образования.
2.1.1. Радиационный захват. Возбуждённое составное ядро оказывается способным удержать в своём составе проникший в него нейтрон, а избыток энергии сверх ближайшего уровня устойчивости - "сбросить" в виде испускаемого γ-кванта электромагнитного излучения. Таким образом, результатом подобного взаимодействия нейтрона с ядром является захват нейтрона исходным ядром, сопровождающийся испусканием γ-радиации, благодаря чему этот тип нейтронной реакции и получил название реакции радиационного захвата.
Рис.2.1. Схематическое представление о реакции радиационного захвата
К реакциям радиационного захвата склонны в различной степени все без исключения известные нуклиды. Наиболее склонные к радиационному захвату сорта атомных ядер называют поглотителями нейтронов.
Например, бор-10 (10B), самарий-149 (149Sm), ксенон-135 (135Xe), европий (Eu), кадмий (Cd), гадолиний (Gd) - все это сильные поглотители нейтронов. Уран-235 (235U), основной топливный компонент подавляющего большинства ядерных реакторов, а также плутоний-239 (239Pu), являющийся вторичным ядерным топливом, воспроизводимым в реакторах, - также являются достаточно сильными поглотителями нейтронов.
2.1.2. Рассеяние. При неспособности возбуждённого составного ядра удержать в своём составе проникший в него нейтрон природное стремление ядра к устойчивости может быть реализовано путём "выталкивания" из ядра захваченного или любого другого нейтрона из своего состава.
Рис.2.2. Схематическое представление о ядерной реакции рассеяния
Таким образом, и до, и после взаимодействия нейтрона с ядром имеются свободный нейтрон и одно и то же ядро, и единственным результатом такого взаимодействия является лишь то, что кинетические энергии исходного и испущенного нейтронов неодинаковы: энергия испускаемого нейтрона в подавляющем большинстве случаев оказывается ниже энергии исходного нейтрона. Кроме того, направления движения исходного и испускаемого нейтронов также неодинаковы.
Внешне такое взаимодействие выглядит не как ядерное, а скорее как обычное механическое соударение нейтрона с ядром, в результате которого нейтрон передает ядру часть своей кинетической энергии, меняя при этом свою скорость и направление движения.
Многократно повторяемые акты таких соударений в классической механике, как известно, называют рассеяниями. По аналогии с механическими рассеяниями нейтронные реакции подобного типа называют реакциями рассеяния.
Склонностью к реакции рассеяния, как и склонностью к радиационному захвату, обладают все (без исключения) известные нуклиды, хотя и в различной степени.
Для реакторщика важно знать, ядра каких элементов наделены Природой этой склонностью к рассеянию, поскольку в тепловом реакторе за счёт реакций рассеяния идёт процесс уменьшения кинетической энергии нейтронов при их перемещении в среде активной зоны. Этот процесс коротко именуется замедлением. Поэтому ядра - хорошие рассеиватели нейтронов, обладающие пониженной склонностью к радиационному захвату, как правило, оказываются и хорошими замедлителями.
Например, ядра атомов водорода (1Н), дейтерия (2D), бериллия (9Be), углерода (12С), кислорода (16О), циркония (91Zr) и ряд других ядер со слабыми захватными свойствами и сильно выраженной склонностью к рассеянию являются хорошими замедлителями.
Материалы - простые и сложные - с хорошими замедляющими свойствами являются столь же принципиально важными компонентами конструкции активных зон ядерных реакторов, как и ядерное топливо и поглотители.
И ещё одна аналогия ядерного рассеяния с механическим: рассеяние может быть упругим и неупругим, причём, критерии оценки упругости рассеяния в обоих случаях одинаковы:
- если суммы кинетических энергий ядра и нейтрона до и после рассеяния равны между собой
(Ея + Ен)до = (Ея + Ен)после ,
рассеяние называют упругим. Иначе говоря, при упругом рассеянии происходит простое перераспределение кинетической энергии: нейтрон отдает часть своей кинетической энергии ядру, кинетическая энергия ядра увеличивается после рассеяния именно на величину этой отдачи, а потенциальная энергия ядра (энергия связи нуклонов) остается прежней, а, следовательно, энергетическое состояние и структура ядра до и после рассеяния остаются неизменными;
- если же сумма кинетических энергий ядра и нейтрона после рассеяния оказывается ниже, чем их сумма до рассеяния,
(Ея + Ен)до > (Ея + Ен)после,
рассеяние называют неупругим.
Не следует думать, что при неупругом рассеянии нарушается закон сохранения энергии: просто разница сумм кинетических энергий до и после рассеяния затрачивается на изменение внутренней структуры ядра подобно тому, как при неупругом механическом соударении тел (например, свинцовых шариков) суммарное изменение их кинетической энергии расходуется на их деформацию. Изменение структуры исходного ядра в процессе неупругого рассеяния равноценно переходу ядра в новое квантовое состояние, в котором в общем случае всегда имеет место некоторый избыток энергии сверх уровня устойчивости, который "сбрасывается" ядром в виде испускаемого гамма-кванта. Физические эксперименты подтверждают, что электромагнитное излучение - непременный спутник реакций неупругого рассеяния, что делает эту реакцию похожей на реакцию радиационного захвата, с той лишь разницей, что при неупругом рассеянии исходный нейтрон не удерживается ядром.
Отметим для памяти еще одну важную закономерность ядерного рассеяния:
- упругое рассеяние в большей степени свойственно лёгким ядрам (с атомной массой А < 20) при взаимодействии их с нейтронами сравнительно небольших кинетических энергий (Е < 0.1 МэВ), тогда как к реакциям неупругого рассеяния более склонны тяжёлые ядра при взаимодействии с нейтронами больших (Е > 1 МэВ) энергий.
*) Иногда выделяют еще один вид рассеяния - так называемое потенциальное рассеяние, - представляя его механизм как скользящий проход нейтрона по периферийной зоне сферы действия ядерных сил ядра и последующий выход его за пределы этой сферы с изменениями в направлении движения и его скорости (кинетической энергии). Структура ядра от такого взаимодействия, конечно, не меняется, составного ядра не образуется, и результатом взаимодействия является только обмен кинетическими энергиями нейтрона и ядра. Разумеется, такой вид рассеяния может быть только упругим, и, поскольку потенциальное рассеяние в работе реактора особо выдающейся роли не играет, его можно попросту рассматривать как небольшую составляющую упругого рассеяния.
И последнее замечание по реакции рассеяния. Качественная идентичность исходных продуктов и результатов реакции рассеяния позволяет при решении некоторых задач физики реакторов игнорировать то, что рассеяние является полноправной нейтронной ядерной реакцией, начинающейся с поглощения ядром свободного нейтрона и образования составного ядра.
Создатель теории замедления Э.Ферми для упрощения представлений рассматривал акт упругого ядерного рассеяния как его механический аналог (то есть как упругое соударение нейтрона с ядром) и получил на такой упрощённой аналитической модели теоретические результаты, правильность которых была подтверждена физическими экспериментами.
При рассмотрении процесса замедления нейтронов в реакторе мы тоже будем пользоваться такими представлениями по той причине, что классические механические образы просты, понятны, привычны, легко воспринимаемы и запоминаемы. Однако, находя в них правильное отражение закономерностей процесса замедления нейтронов, не будем всё же забывать, что это - лишь механическая модель процесса, а сам процесс - значительно более сложен.
2.1.3. Реакция деления. Третий способ выхода возбуждённого составного ядра в более устойчивое образование - деление его на две, три (или даже более) протонно-нейтронных комбинации, называемых осколками деления.
В отличие от реакций радиационного захвата и рассеяния, к делению склонны далеко не все известные ядра, а лишь некоторые чётно-нечётные ядра тяжёлых элементов. Вот некоторые из них:
233U, 235U, 239Pu, 241Pu, 251Cf, ...
Наиболее важным из перечисленных нуклидов является уран-235 - основное топливо большинства существующих ядерных реакторов. Уран-235 делится нейтронами любых кинетических энергий.
Другим по значимости делящимся нуклидом является плутоний-239 - вторичное топливо в урановых реакторах, воспроизводящееся в процессе их работы. Как и уран-235, плутоний-239 делится нейтронами любых кинетических энергий.
Третьим по значению для реакторщика делящимся нуклидом является чётно-чётный изотоп урана - уран-238 (238U). Чётное число нейтронов в его ядре дает более устойчивую комбинацию, чем нечётное их число, благодаря чему деление урана-238 имеет пороговый характер: для инициации деления ядер 238U годны не любые нейтроны, а лишь нейтроны с энергиями выше Еп = 1.1 МэВ. (Говорят: Eп = 1.1 МэВ - энергетический порог деления урана-238).
Казалось бы: стоит ли обращать серьёзное внимание на уран-238 ?
Стройте реакторы с ураном-235 в качестве топлива, раз он такой хороший!... Но:
- во-первых, урана-238 в Природе больше всего: природная смесь изотопов урана содержит в себе 99.28% урана-238 и лишь 0.71% урана-235; операции разделения изотопов с целью получения чистого или высокообогащенного урана-235 весьма энергоёмки, а потому экономически невыгодны; уже по этой причине стоит задуматься над тем, что следует "сжигать" в реакторах в первую очередь - уран-235 или уран-238 ?
- во-вторых, уран-238 как раз и является тем исходным сырьевым нуклидом, из которого в работающем реакторе воспроизводится вторичное топливо - плутоний-239; это побуждает не просто терпимо относиться к неизбежному присутствию в реакторе урана-238, но и думать о том, как организовать в реакторе процесс наиболее эффективного превращения урана-238 в плутоний-239 с целью получения и использования наибольшего количества последнего.
Реакция деления, разумеется, является самой важной и практически значимой из трёх упомянутых нейтронных реакций. Ядерный реактор, по существу, конструируется и строится ради осуществления самоподдерживающейся цепной реакции деления требуемой интенсивности, а реакции радиационного захвата и рассеяния оказываются либо вынужденно необходимыми, либо просто неизбежными, идущими параллельно и одновременно с реакцией деления, то есть сопутствующими ей.
Особая роль реакции деления в ядерном реакторе побуждает к более детальному рассмотрению её особенностей. Но прежде, чем сделать это, упомянем ещё о некоторых видах нейтронных реакций, сопровождающих работу ядерного реактора, но не имеющих принципиального значения.
2.1.4. Ещё три нейтронные реакции. Во-первых, это реакция типа (n,p) - то есть нейтронная реакция, завершающаяся испусканием протона.
Рис.2.3. Схематическое представление о реакции типа (n,p)
В результате этой реакции образуется изобара исходного ядра, поскольку протон уносит один элементарный заряд, а масса ядра практически не меняется (нейтрон привнесен, а протон - унесен).
Во-вторых, это реакция типа (n,α) - то есть реакция, завершающаяся испусканием возбужденным составным ядром α-частицы (лишённого электронной оболочки ядра атома гелия 4He),
Рис.2.4. Схематическое представление о реакции типа (n,a)
в результате которой массовое число результирующего ядра снижается на 3 а.е.м. сравнительно с массой исходного ядра, а протонный заряд уменьшается на две единицы.
И, наконец, это реакция типа (n,2n) - то есть реакция с испусканием возбужденным составным ядром двух нейтронов,
Рис.2.5. Схематическое представление о реакции типа (n,2n).
в результате которой образуется изотоп исходного элемента, на единицу меньшей массы сравнительно с массой исходного ядра.
Эти три упомянутых реакции свойственны лишь очень немногим ядрам при их взаимодействии с нейтронами высоких кинетических энергий. В ядерных реакторах эти типы нейтронных взаимодействий относительно редки и принципиального влияния на работу реактора не оказывают. Упомянуты они здесь только потому, что используются в плутоний-бериллиевых и полоний-бериллиевых искусственных источниках нейтронов, о необходимости которых будет сказано при изучении кинетики ядерных реакторов.
СМОТРИТЕ ТАКЖЕ:
Социальные комментарии Cackle
|