Главная >> Фейнмановские лекции по физике >> Том 3 >> Глава 30. Дифракция Результирующее поле n одинаковых осцилляторов
Настоящая глава — непосредственное продолжение предыдущей, хотя название «Интерференция» здесь заменено словом «Дифракция». До сих пор никому не удалось удовлетворительным образом определить разницу между дифракцией и интерференцией. Дело здесь только в привычке, а существенного физического различия между этими явлениями нет. Единственное, что можно сказать по этому поводу,— это следующее: когда источников мало, например два, то результат их совместного действия обычно называют интерференцией, а если источников много, то чаще говорят о дифракции. Поэтому мы не будем утруждать себя вопросом — интерференция это или дифракция, а просто продолжим наше обсуждение с того места, где мы остановились в предыдущей главе.
Обсудим теперь случай, когда имеется n осцилляторов, расположенных на равных расстояниях один от другого и обладающих равными амплитудами, но разными фазами создаваемых ими полей. Разность фаз создается либо из-за выбора определенных фазовых сдвигов колебаний осцилляторов, либо потому, что мы находимся под углом к осцилляторам и возникает разность хода лучей. Независимо от причины возникновения разности фаз необходимо вычислить сумму такого вида:
где φ — разность фаз соседних осцилляторов для некоторого направления лучей. В данном частном случае φ =α + 2πd 1/λ sin θ. Вычислим сумму R. Для этого воспользуемся геометрическим способом сложения. Длина первого слагаемого А, а его фаза равна нулю; длина второго также А, а фаза его равна φ. Следующее слагаемое имеет снова длину А и фазу, равную 2 φ, и т. д. В конце концов получается часть правильного многоугольника с n сторонами (фиг. 30.1).
Вершины многоугольника лежат, конечно, на окружности, и чтобы легче было определить результирующую амплитуду, найдем радиус этой окружности. Пусть Q есть ее центр. Тогда угол OQS равен как раз фазе φ (поскольку радиус QS образует с А2 такой же угол, как QO с A1). Следовательно, радиус r должен удовлетворять равенству А = 2r sin φ/2, откуда мы и находим величину r. Далее, большой угол OQT равен nφ; следовательно, AR=2 r sin n φ/2. Исключая из обоих равенств r, получаем
Таким образом, суммарная интенсивность оказывается равной
Проанализируем это выражение и обсудим вытекающие из него следствия. Прежде всего, положив n = 1, получим, как и следовало ожидать, I = I0. Проверим формулу для n = 2: с помощью соотношения sin φ =2 sin φ/2 cos φ/2 сразу находим AR = 2 A cos φ/2, что совпадает с (29.12).
Мы вынуждены рассматривать сложение полей от многих источников потому, что в этом случае интенсивность в одном направлении получается много больше, чем в соседних, т. е. все побочные максимумы интенсивности оказываются гораздо меньше основного. Чтобы понять этот факт, начертим кривую соответствующую выражению (30.3) для больших n и φ, близких к нулю. Прежде всего, когда φ точно равно нулю, мы получаем отношение 0/0, но фактически для бесконечно малых φ отношение синусов равно n2, так как синус можно заменить его аргументом. Таким образом, максимум кривой в n2 раз больше интенсивности одного осциллятора. Этот результат легко понять, поскольку при нулевой разности фаз все n маленьких векторов складываются в один вектор, в n раз больший исходного, а интенсивность увеличивается в n2 раз.
С ростом фазы φ отношение двух синусов падает и обращается в нуль в первый раз при nφ/2 = π, поскольку sin π = 0. Другими словами, значение φ = 2 π/n отвечает первому минимуму кривой (фиг. 30.2). С точки зрения векторов на фиг. 30.1 первый минимум возникает в том случае, когда стрелки векторов возвращаются в исходную точку, при этом полная разность фаз от первого до последнего осциллятора равна 2π.
Перейдем к следующему максимуму и покажем, что он действительно, как мы и ждали, много меньше первого. Для точного определения положения максимума необходимо учитывать, что и числитель, и знаменатель в (30.3) оба меняются с изменением φ. Мы не станем этого делать, поскольку при большом n sin φ/2 меняется медленнее sin nφ/2 и условие sin nφ/2 = 1 дает положение максимума с большой точностью. Максимум sin2 nφ/2 достигается при nφ/2 =Зπ/2 или φ = Зπ/n. Это означает, что стрелки векторов описывают полторы окружности.
Подставляя φ=3π/n, получаем sin23π/2 =1 в числителе (30.3) (с этой целью и был выбран угол φ) и sin23π/2n в знаменателе. Для достаточно большого n можно заменить синус его аргументом: sin 3π/2n =3π/2n. Отсюда интенсивность во втором максимуме оказывается равной I = I0 (4n2/9π2). Но n2I0 — не что иное, как интенсивность в первом максимуме, т. е. интенсивность второго максимума получается равной 4/9π22 от максимальной, что составляет 0,047, или меньше 5%! Остальные максимумы, очевидно, будут еще меньше. Таким образом, возникает очень узкий основной максимум и очень слабые дополнительные максимумы по обе стороны от основного.
Можно показать, что площадь под кривой интенсивности, включая все максимумы, равна 2πnI0 и в два раза превышает площадь пунктирного прямоугольника на фиг. 30.2.
Посмотрим теперь, что дает формула (30.3) в приложении к разным случаям. Пусть источники расположены на одной линии, как показано на фиг. 30.3. Всего имеется n источников на расстоянии d друг от друга, и сдвиг фазы между соседними источниками выбран равным α. Тогда для лучей, распространяющихся в заданном направлении θ, отсчитываемом от нормали, вследствие разности хода лучей от двух соседних источников возникает дополнительный сдвиг фазы 2πd 1/λ sinθ. Таким образом,
Рассмотрим сначала случай α =0. Все осцилляторы колеблются с одной фазой; требуется найти интенсивность их излучения как функцию угла θ. Подставим с этой целью φ=kd sin θ в формулу (30.3) и посмотрим, что получится в результате. Прежде всего при φ=0 возникает максимум. Значит, осцилляторы, колеблющиеся с одной фазой, дают мощное излучение в направлении θ =0. Интересно узнать, где находится первый минимум.
Он возникает при φ=2π/n; другими словами, первый минимум кривой интенсивности определяется из соотношения (2πd/λ) sin θ =2π/n. Сокращая на 2π, получаем
Теперь разберем с физической точки зрения, почему минимум возникает именно в этом месте. В этом выражении nd есть полная длина L нашей системы осцилляторов. Обращаясь к фиг. 30.3, мы видим, что nd sin θ =L sin θ=Δ. Формула (30.5) подсказывает нам, что минимум возникает при Δ, равном одной длине волны. Но почему минимум получается при Δ = λ? Дело в том, что поля от отдельных осцилляторов равномерно распределены по фазе от 0 до 360°. Стрелки (см. фиг. 30.1) описывают полную окружность; мы складываем равные векторы, имеющие произвольные направления, а в этом случае сумма равна нулю. Вот при таких значениях угла, когда Δ = λ, возникает минимум. Это и есть первый минимум.
Формула (30.3) имеет еще одну важную особенность: при увеличении угла φ на число, кратное 2π, значение интенсивности не меняется. Поэтому для φ=2π, 4π, 6π и т. д. также возникают резкие и высокие максимумы. Вблизи этих максимумов интенсивность повторяет свой ход (см. фиг. 30.2). Зададимся вопросом, в силу каких геометрических соотношений возникают другие максимумы? Условие появления максимума записывается в виде φ=2πm, где m — любое целое число. Отсюда получаем (2πd/λ) sin θ =2πm. Сокращая на 2π, получаем
|
Это соотношение очень похоже на формулу (30.5). Однако там было nd sin θ =λ. Разница в том, что здесь нужно взять каждый отдельный источник и выяснить, что для него означает условие d sin θ=mλ; угол θ здесь таков, что разность хода δ = mλ. Другими словами, волны, идущие от источников, различаются по фазе на величину, кратную 360°, и, следовательно, все находятся в фазе. Поэтому при сложении волн возникает столь же высокий максимум, как и в рассмотренном ранее случае m=0. Побочные максимумы и весь ход интенсивности здесь такие же, как в случае φ =0. Таким образом, наша система посылает пучки лучей в разных направлениях, причем каждый пучок имеет высокий центральный максимум и ряд слабых боковых. Главные (центральные) максимумы в зависимости от величины m называются максимумами нулевого, первого и т. д. порядков; m называют порядком максимума.
Обратите внимание на такой факт: если d меньше λ, то формула (30.6) имеет единственное решение при m=0. Поэтому для малого расстояния между источниками возникает один-единственный пучок, сконцентрированный около θ=0. (Разумеется, есть еще пучок в обратном направлении.) Чтобы получить максимумы других порядков, расстояние d должно быть больше одной длины волны.
СМОТРИТЕ ТАКЖЕ:
Социальные комментарии Cackle
|