На главную
Физика - одна из самых удивительных наук! Физика столь интенсивно развивается, что даже лучшие педагоги сталкиваются с большими трудностями, когда им надо рассказать о современной науке. Данный ресурс поможет эффективно и интересно изучать физику. Учите физику!
   

Обучение и материалы
Физический справочник
Формулы по физике
Шпаргалки по физике
Энциклопедия
Репетиторы по физике
Работа для физиков
Быстрый устный счет
Виртуальные лабораторные
Опыты по физике
ЕГЭ онлайн
Онлайн тестирование
Ученые физики
Необъяснимые явления
Ваша реклама на сайте
Разное
Контакты
Спецкурс
Фейнмановские лекции

В мире больших скоростей

Введение в теорию относительности

Лекции по биофизике
Лекции по ядерной физике
Ускорение времени...
Лазеры
Нанотехнологии
Книги
полезное
Смешные анекдоты о физике
Готовые шпоры по физике
Физика в жизни
Ученые и деньги
Нобелевские лауреаты
Фото
Видео
Карта сайта
На заметку
Если вам понравился сайт, предлагаем разместить нашу кнопку
Кнопка сайта All-fizika.com
Дополнительно
Компьютерные программы
по физике
Программы по физике


Физика и юмор
Физика и юмор


Онлайн тестирование
по физике
Онлайн тестирование по физике



-









Поле, излучаемое средой

Мы должны теперь выяснить, имеет ли поле осциллирующих зарядов в пластинке тот же вид, что и поле Еа во втором члене (31.8). Если это так, то тем самым мы найдем и показатель преломления n [поскольку n — единственный фактор в (31.8), не выражающийся через фундаментальные величины]. Вернемся теперь к вычислению поля Еа , создаваемого зарядами пластинки. (Для удобства мы выписали в табл. 31.1 обозначения, которыми мы уже пользовались, и те, которые нам понадобятся в дальнейшем.)

Маленькое изображение
 

Если источник S (на фиг. 31.1) находится слева на достаточно большом расстоянии, то поле Es имеет одинаковую фазу по всей длине пластинки, и вблизи пластинки его можно записать в виде

Маленькое изображение
 

На самой пластинке в точке z = 0 мы имеем

Маленькое изображение
 

Это электрическое поле воздействует на каждый электрон в атоме, и они под действием электрической силы qE будут колебаться вверх и вниз (если Е0 направлено вертикально). Чтобы найти характер движения электронов, представим атомы в виде маленьких осцилляторов, т.е. пусть электроны упруго соединены с атомом; это значит, что смещение электронов из нормального положения под действием силы пропорционально величине силы.

Если вы слышали о модели атома, в которой электроны вращаются по орбите вокруг ядра, то эта модель атома вам покажется просто смешной. Но это лишь упрощенная модель. Точная теория атома, основанная на квантовой механике, утверждает, что в процессах с участием света электроны ведут себя так, как будто они закреплены на пружинах. Итак, предположим, что на электроны действует линейная возвращающая сила, и поэтому они ведут себя как осцилляторы с массой m и резонансной частотой ω0. Мы уже занимались изучением таких осцилляторов и знаем уравнение движения, которому они подчиняются:

Маленькое изображение
 

(здесь F — внешняя сила).

В нашем случае внешняя сила создается электрическим полем волны источника, поэтому можно написать

Маленькое изображение
 

где qe—заряд электрона, а в качестве Es мы взяли значение Es = E0e из уравнения (31.10). Уравнение движения электрона приобретает вид

Маленькое изображение
 

Решение этого уравнения, найденное нами раньше, выглядит следующим образом:

Маленькое изображение
 

подставляя его в (31.13), получаем

Маленькое изображение
 

откуда

Маленькое изображение
 

Мы нашли то, что хотели,— движение электронов в пластинке. Оно одинаково для всех электронов, и только среднее положение («нуль» движения) у каждого электрона свое.

Теперь мы в состоянии определить поле Еа, создаваемое атомами в точке Р, поскольку поле заряженной плоскости было найдено еще раньше (в конце гл. 30). Обращаясь к уравнению (30.19), мы видим, что поле Еа в точке Р есть скорость заряда, запаздывающая по времени на величину z/с, умноженная на отрицательную константу. Дифференцируя х из (31.16), получаем скорость и, введя запаздывание [или же просто подставляя х0 из (31.15) в (30.18)], приходим к формуле

Маленькое изображение
 

Как и следовало ожидать, вынужденное колебание электронов привело к новой волне, распространяющейся вправо (на это указывает множитель exp [iω(t—z/c)]); амплитуда волны пропорциональна числу атомов на единице площади пластинки (множитель η), а также амплитуде поля источника (Е0). Кроме того, возникают и другие величины, зависящие от свойств атомов (qe, m , ω0).

Самый важный момент, однако, заключается в том, что формула (31.17) для Еа очень похожа на выражение Еа в (31.8), полученное нами с помощью введения запаздывания в среде с показателем преломления n. Оба выражения совпадают, если положить

Маленькое изображение
 

Заметьте, что обе стороны этого равенства пропорциональны Δz, поскольку η — число атомов на единицу площади — равно NΔz, где N — число атомов на единицу объема пластинки. Подставляя NΔz вместо η и сокращая на Δz получаем наш основной результат — формулу для показателя преломления, выраженную через константы, зависящие от свойств атомов, и частоту света:

Маленькое изображение
 

Эта формула «объясняет» показатель преломления, к чему мы и стремились.



СМОТРИТЕ ТАКЖЕ:


Социальные комментарии Cackle


 
 
© All-Физика, 2009-2024
При использовании материалов сайта ссылка на www.all-fizika.com обязательна.