На главную
Физика - одна из самых удивительных наук! Физика столь интенсивно развивается, что даже лучшие педагоги сталкиваются с большими трудностями, когда им надо рассказать о современной науке. Данный ресурс поможет эффективно и интересно изучать физику. Учите физику!
   

Обучение и материалы
Физический справочник
Формулы по физике
Шпаргалки по физике
Энциклопедия
Репетиторы по физике
Работа для физиков
Быстрый устный счет
Виртуальные лабораторные
Опыты по физике
ЕГЭ онлайн
Онлайн тестирование
Ученые физики
Необъяснимые явления
Ваша реклама на сайте
Разное
Контакты
Спецкурс
Фейнмановские лекции

В мире больших скоростей

Введение в теорию относительности

Лекции по биофизике
Лекции по ядерной физике
Ускорение времени...
Лазеры
Нанотехнологии
Книги
полезное
Смешные анекдоты о физике
Готовые шпоры по физике
Физика в жизни
Ученые и деньги
Нобелевские лауреаты
Фото
Видео
Карта сайта
На заметку
Если вам понравился сайт, предлагаем разместить нашу кнопку
Кнопка сайта All-fizika.com
Дополнительно
Компьютерные программы
по физике
Программы по физике


Физика и юмор
Физика и юмор


Онлайн тестирование
по физике
Онлайн тестирование по физике



-









Размер атома

Рассмотрим еще одно применение принципа неопределенности (38.3), но только, пожалуйста, не воспринимайте этот расчет чересчур буквально; общая мысль правильна, но анализ проделан не очень аккуратно. Мысль эта касается определения размера атомов; ведь по классическим воззрениям электроны должны были бы излучать свет и, крутясь по спирали, упасть на поверхность ядра. Но, согласно квантовой механике, это невозможно, потому что в противном случае мы бы знали, где очутился электрон и насколько быстро он вертится.
 
Допустим, имеется атом водорода и мы измеряем положение электрона; мы не должны быть в состоянии предвидеть точно, где он окажется, иначе расплывание импульса станет бесконечным. Всякий раз, как мы смотрим на электрон, он где-нибудь оказывается; у него есть амплитуда вероятности оказаться в различных местах, так что есть вероятность найти его где угодно. Однако не все эти места должны быть возле самого ядра; положим, что существует разброс в расстояниях порядка а, т. е. расстояние от ядра до электрона примерно в среднем равно а. Определим а, потребовав, чтобы полная энергия атома  оказалась  минимальной.
Разброс в импульсах, в согласии с соотношением неопределенностей, должен быть равен примерно hla; поэтому, стремясь измерить как-нибудь импульс электрона (например, рассеивая на нем фотоны и наблюдая эффект Допплера от движущегося рассеивателя), мы не будем получать все время нуль (электрон не стоит на месте), а будем получать импульсы порядка р ≈ hla. Кинетическая энергия электронов примерно будет равна 1/2mv2 = p2/2m = h2/2ma2. (To, что мы сейчас делаем, в каком-то смысле есть анализ размерностей: мы прикидываем, как кинетическая энергия может зависеть от постоянной Планка h, массы т и размера атома а. Ответ получается с точностью до численных множителей типа 2, π и т. д. Мы даже не определили как следует а.) Далее, потенциальная энергия равна частному от деления минус е2 на расстоянии от центра, скажем, —е2(как мы помним, е2 — это квадрат заряда электрона, деленный на 4πε0). Теперь смотрите: когда а уменьшается, то потенциальная энергия тоже уменьшается, но чем меньше а, тем больше требуемый принципом неопределенности импульс и тем больше кинетическая энергия.   Полная энергия  равна

Маленькое изображение
 

Мы  не  знаем, чему   равно   а, но  зато  мы  знаем, что   атом, обеспечивая свое существование, вынужден идти  на   компромисс, с тем чтобы полная энергия его была как можно меньше. Чтобы найти минимум Е, продифференцируем его по а, потребуем равенства производной нулю и найдем а. Производная Е равна

Маленькое изображение
 

Это расстояние называется воровским радиусом, и мы видим, что размеры атома — порядка ангстрема. Получилась правильная цифра. Это очень хорошо, это даже удивительно хорошо, ведь до сих пор никаких теоретических соображений о размере атома у нас не было. С классической точки зрения атомы попросту невозможны: электроны должны упасть на ядра. Подставив формулу (38.12) для а0 в (38.10), мы найдем энергию.  Она оказывается равной

Маленькое изображение
  

Что означает отрицательная энергия? А то, что, когда электрон находится в атоме, у него энергии меньше, чем когда он свободен. Иначе говоря, в атоме он связан. И нужна энергия, чтобы вырвать его из атома; для ионизации атома водорода требуется энергия 13,6 эв. Не исключено, конечно, что потребуется вдвое или втрое больше энергии, или в я раз меньше, так как расчет наш был очень неряшлив. Однако мы схитрили и выбрали все константы так, чтобы итог получился абсолютно правильным! Эта величина —13,6 эв — называется ридбергом энергии; это энергия ионизации водорода.
 
Только теперь становится понятным, отчего мы не проваливаемся сквозь пол. При ходьбе вся масса атомов наших ботинок отталкивается от пола, от всей массы его атомов. Атомы сминаются, электроны вынуждены тесниться в меньшем объеме, и по принципу неопределенности их импульсы в среднем увеличиваются, а увеличение импульсов означает рост энергии. Сопротивление атомов сжатию — это не классический, а квантовомехапический эффект. По классическим понятиям следовало ожидать, что при сближении электронов с протонами энергия уменьшится; наивыгоднейшее расположение положительных и отрицательных зарядов в классической физике — это когда они сидят верхом друг на друге. Классической физике это было хорошо известно и представляло загадку: атомы-то все же существовали! Конечно, ученые и тогда придумывали разные способы выхода из тупика, но правильный (будем надеяться!) способ стал известен только нам!
 
Кстати, когда вокруг ядра бывает много электронов, то они тоже стараются держаться подальше друг от друга. Причина этого пока вам непонятна, но это факт, что если какой-то электрон занял какое-то место, то другой этого места уже не займет. Точнее, из-за существования двух направлений спина, эти электроны могут усесться друг на друга и вертеться: один — в одну сторону, другой — в другую. Но уже никакого третьего на это место вам не поместить. Вы должны их помещать на новые места, и в этом-то истинная причина того, что вещество обладает упругостью. Если бы можно было помещать все электроны в одно место, вещество было бы даже плотней, чем обычно. И именно благодаря тому, что электроны не могут сидеть друг на друге, существуют и столы, и другие твердые предметы.
Естественно поэтому, что, желая понять свойства вещества, нужно пользоваться квантовой механикой; классической для этого   явно  недостаточно.



СМОТРИТЕ ТАКЖЕ:


Социальные комментарии Cackle


 
 
© All-Физика, 2009-2024
При использовании материалов сайта ссылка на www.all-fizika.com обязательна.


-->