Главная >> Фейнмановские лекции по физике >> Том 4 >> Глава 48. Биения Локализованный волновой пакет
Следующий вопрос, который мы хотим обсудить,— это интерференция волн как в пространстве, так и во времени. Предположим, что в пространстве распространяются две волны. Вы, конечно, знаете, что распространение волны в пространстве, например звуковой, можно описать с помощью экспоненты exp[i (ωt - kx)]. Такая экспонента удовлетворяет волновому уравнению при условии, что ω2=k2с2, где с — скорость распространения волны. В этом случае экспоненту можно записать в виде exp[ik(z—ct)], что является частным случаем общего решения f(x—ct). Такая экспонента должна описывать волну, распространяющуюся со скоростью ω/k, равной с, и поэтому здесь все в порядке.
Давайте теперь складывать две такие волны. Пусть первая волна распространяется с одной частотой, а вторая волна — с какой-то другой. Случай неравных амплитуд рассмотрите самостоятельно, хотя существенного отличия здесь нет. Таким образом, мы хотим сложить ехр[i(ω1t - k1x)] + ехр[i(ω2t - k2x)]. Это можно сделать с помощью математики, аналогичной использованной нами при сложении двух сигналов. Если скорости с обеих волн одинаковы, то сделать это очень легко; за исключением того, что вместо t стоит t` = t—x/c, это будет то же самое, что мы недавно проделали:
|
При этом, естественно, мы получаем точно такие же модуляции, как и раньше, которые, однако, движутся вместе с волной. Другими словами, если сложить две волны, которые не просто осциллируют, но и перемещаются в пространстве, то получившаяся волна также будет двигаться с той же скоростью.
Хотелось бы обобщить это на случай волн, у которых отношение между частотой и волновым числом к не столь просто, например распространение волн в веществе с некоторым показателем преломления. В гл. 31 (вып. 3) мы уже изучали показатель преломления п и выяснили, что он связан с волновым числом следующим образом: к=nω!с. В качестве интересного примера мы нашли показатель преломления п для рентгеновских лучей:
|
На самом деле в гл. 31 мы получали и более сложные формулы, однако эта ничуть не хуже, так почему бы нам не взять ее в качестве примера.
Нам известно, что даже в том случае, когда ω и k не пропорциональны друг другу, отношение ω/k все равно будет скоростью распространения данной частоты и данного волнового числа. Это отношение называется фазовой споростью, т. е. скоростью, с которой движется фаза или узел отдельной волны:
|
Интересно, что, например, для случая распространения рентгеновских лучей в стекле эта фазовая скорость больше скорости света в пустоте [поскольку n, согласно (48.12), меньше единицы], а это несколько неприятно, ведь не думаем же мы, что можно посылать сигналы быстрее скорости света!
Обсудим теперь интерференцию двух волн, у которых значения ω и k связаны какой-то определенной зависимостью. Например, написанная ранее формула для показателя n говорит, что k есть определенная известная функция частоты ω. Для большей определенности давайте выпишем формулу зависимости k и ω в данной частной задаче:
где a=Nq2e/2ε0m — постоянная. Во всяком случае, мы хотим сложить такие две волны, у которых для каждой частоты существует определенное волновое число.
Давайте сделаем это точно так же, как и при получении уравнения (48.7):
Таким образом, снова получается модулированная волна, распространяющаяся со средней частотой и средним волновым числом, однако сила ее меняется в соответствии с выражением, зависящим от разности частот и разности волновых чисел.
Рассмотрим теперь случай, когда разности между двумя волнами относительно малы. Предположим, что мы складываем две волны с приблизительно равными частотами, при этом (ω1 + ω2)/2 практически равно каждой из частот ω. То же можно сказать и о (k1 + k2)/2. Таким образом, скорость волны, быстрых осцилляции, узлов действительно остается равной ω/к. Но смотрите, скорость распространения модуляций не та же самая! Как нужно изменить х, чтобы сбалансировать некоторую величину времени t? Скорость этих модулирующих волн равна
Скорость движения модуляций иногда называют групповой скоростью. Если мы возьмем случай относительно малой разности между частотами и соответственно относительно малой разности между волновыми числами, то это выражение переходит в пределе в
|
Другими словами, чем медленнее модуляции, тем медленнее и биения, и вот что самое удивительное — существует определенная скорость их распространения, которая не равна фазовой скорости волны.
Групповая скорость равна производной ω по k, а фазовая скорость равна отношению ω/к.
Посмотрим, можно ли понять, почему так происходит. Рассмотрим две волны с несколько различными длинами, как это показано на фиг. 48.1. Они то совпадают по фазе, то различаются, то снова совпадают и т. д. Однако теперь эти волны в действительности представляют волны в пространстве, распространяющиеся с немного различными скоростями. Но поскольку фазовая скорость, скорость узлов этих двух волн, не в точности одинакова, то происходит нечто новое. Предположим, что мы едем рядом с одной из волн и смотрим на другую. Если бы они двигались с одинаковой скоростью, то вторая волна оставалась бы относительно нас там же, где и была с самого начала, поскольку мы едем как бы на гребне одной волны и видим гребень второй прямо около себя. Однако в действительности скорости не равны. Частоты немного отличаются друг от друга, а поэтому немного отличаются и скорости. Из-за этой небольшой разницы в скоростях другая волна либо медленно обгоняет нас, либо отстает. Что же с течением времени происходит с узлом? Если чуть-чуть продвинуть одну из волн, то узел при этом уйдет на значительное расстояние вперед (или назад), т. е. сумма этих двух волн имеет какую-то огибающую, которая вместе с распространением волн скользит по ним с другой скоростью. Групповая скорость является той скоростью, с которой передаются модулирующие сигналы.
Если мы посылаем сигнал, т. е. производим какие-то изменения волны, которые могут быть услышаны и расшифрованы кем-то, то это является своего рода модуляцией, но такая модуляция при условии, что она относительно медленная, будет распространяться с групповой скоростью (быстрые модуляции значительно труднее анализировать).
Теперь мы можем показать (наконец-то!), что скорость распространения рентгеновских лучей в куске угля, например, не больше, чем скорость света, хотя фазовая скорость больше скорости света. Чтобы сделать это, нужно найти соотношение dω/dk, которое мы вычислим дифференцированием формулы (48.14): dk/dω = 1/c+a/ω2c. А групповая скорость равна обратной величине, т. е.
|
что меньше, чем с! Таким образом, хотя фазы могут бежать быстрее скорости света, модулирующие сигналы движутся медленнее, и в этом состоит разрешение кажущегося парадокса! Разумеется, в простейшем случае ω=kс групповая скорость dω/dk тоже равна с, т. е. когда все фазы движутся с одинаковой скоростью, естественно, и групповая скорость будет той же самой.
СМОТРИТЕ ТАКЖЕ:
Социальные комментарии Cackle
|