На главную
Физика - одна из самых удивительных наук! Физика столь интенсивно развивается, что даже лучшие педагоги сталкиваются с большими трудностями, когда им надо рассказать о современной науке. Данный ресурс поможет эффективно и интересно изучать физику. Учите физику!
   

Обучение и материалы
Физический справочник
Формулы по физике
Шпаргалки по физике
Энциклопедия
Репетиторы по физике
Работа для физиков
Быстрый устный счет
Виртуальные лабораторные
Опыты по физике
ЕГЭ онлайн
Онлайн тестирование
Ученые физики
Необъяснимые явления
Ваша реклама на сайте
Разное
Контакты
Спецкурс
Фейнмановские лекции

В мире больших скоростей

Введение в теорию относительности

Лекции по биофизике
Лекции по ядерной физике
Ускорение времени...
Лазеры
Нанотехнологии
Книги
полезное
Смешные анекдоты о физике
Готовые шпоры по физике
Физика в жизни
Ученые и деньги
Нобелевские лауреаты
Фото
Видео
Карта сайта
На заметку
Если вам понравился сайт, предлагаем разместить нашу кнопку
Кнопка сайта All-fizika.com
Дополнительно
Компьютерные программы
по физике
Программы по физике


Физика и юмор
Физика и юмор


Онлайн тестирование
по физике
Онлайн тестирование по физике



-









Волны в твердом теле

Следующий тип волн, о которых нам следует поговорить,— это волны в твердом теле. Мы уже рассмотрели звуковые волны в жидкости и газе, а между ними и звуковыми волнами в твердом теле имеется непосредственная аналогия. Если резко толкнуть твердое тело, то оно сожмется. Оно сопротивляется сжатию и в нем возникнут волны, аналогичные звуковым. Однако в твердом теле могут быть волны и другого рода, которых не бывает в жидкости. Если мы возбудим колебания твердого тела с помощью бокового давления (это называется сдвигом), то тело стремится вернуться в начальное положение. Именно этим, по определению, твердое тело отличается от жидкого. Если искривить жидкость и подержать ее так немного, чтобы она успокоилась, а затем отпустить, то она останется в том же состоянии, но если мы возьмем твердое тело, похожее на дрожащий кусок желе, надавим на него и отпустим, то оно вернется назад, а в теле возникает волна сдвига, которая распространяется так же, как и волна сжатия. Во всех случаях скорость этих волн меньше скорости продольных волн. В каком-то отношении волны сдвига больше напоминают световые волны, ибо здесь мы тоже имеем дело с поляризацией. У звука нет никакой поляризации, это просто волна сжатия, а световые колебания имеют характерную ориентацию, перпендикулярную к направлению их  распространения.
 
Итак, в твердом теле могут быть волны обоих сортов. Во-первых, там распространяются волны сжатия, аналогичные звуку в воздухе, и, во-вторых, волны сдвига. Если наше твердое тело не кристалл, то волна сдвига может быть поляризована в любом направлении. (Конечно, все твердые тела — кристаллы, но если мы возьмем кусок, состоящий из микрокристаллов всех ориентации,   то   кристаллическая   анизотропия  усредняется.)
 
Есть еще один интересный вопрос, касающийся звуковых волн. Что получится, если длина волны в твердом теле становится все меньше и меньше? До каких пор может это продолжаться? Ясно, что она не может стать меньше расстояния между атомами, ибо если под волной мы понимаем такое явление, когда одна точка идет вниз, а следующая— вверх и т. д., то кратчайшая возможная длина волны при этом, очевидно, равна межатомному расстоянию. Вам известно, что колебания могут быть как продольные, так и поперечные, длинноволновые и коротковолновые.
 
Если мы рассматриваем длины волн, сравнимые с межатомным расстоянием, то скорость уже не будет постоянной; возникает дисперсионный эффект, когда скорость становится зависимой от волнового числа. А высшая гармоника поперечных волн все же должна характеризоваться именно тем, что каждые два соседних атома делают нечто противоположное друг другу.
 
С атомистической точки зрения ситуация здесь напоминает два связанных маятника, о которых мы уже говорили. У них могут быть два вида собственных колебаний: один — когда они качаются вместе, и другой — когда в противоположные стороны. Так что волны в твердом теле можно рассматривать и с иной точки зрения — как колебания связанных гармонических осцилляторов, подобных огромному числу связанных маятнич-ков, причем высшая гармоника получается, когда маятнички колеблются в противоположные стороны, и низшие — при других соотношениях фаз.
 
Эти кратчайшие волны настолько малы, что обычно их невозможно получить технически. Однако они очень интересны, поскольку свойства этих коротких звуковых волн помогают нам объяснить в термодинамической теории твердого тела его тепловые свойства, в частности удельную теплоемкость. Переход к предельно коротким звуковым волнам означает переход к индивидуальному движению атомов; это в конечном счете одно и то же.
 
Очень интересным примером звуковых волн в твердом теле являются волны, идущие по земному шару, как продольные, так и поперечные. Хотя нам и не известно почему, но внутри Земли время от времени происходят землетрясения. Одни породы сдвигаются относительно других, и это движение сходно с очень низким звуком. Из такого источника выходят и путешествуют по всей Земле волны, подобные звуковым, и хотя их длина значительно больше длины обычных звуковых волн, но все же это звуковые волны. Наша Земля не однородна: давление, плотность, сжимаемость и т. д. изменяются с изменением глубины, а поэтому изменяется и скорость. Возникает нечто похожее на показатель преломления, и волны идут не по прямому пути, а по некоторой кривой. Кроме того, картина осложняется тем, что продольные и поперечные волны распространяются с разной скоростью, а поэтому и решения для них будут разными. Если мы в каком-то месте поставим сейсмограф и будем наблюдать, как скачет его самописец после того, как где-то произошло землетрясение, то мы увидим не просто какие-то неправильные прыжки. Мы увидим, как самописец сначала запрыгает, затем успокоится, затем опять запрыгает. Более конкретные детали происходящего зависят от положения сейсмографа. Если он расположен достаточно близко к месту землетрясения, то сначала мы примем продольные волны от возмущения, а уж потом, несколько секунд спустя,— поперечные, ибо они идут медленней. Измеряя разницу времени между их приходами, можно сказать, насколько далеко произошло землетрясение, разумеется, если мы достаточно хорошо знаем скорости и состав внутренних областей.

Маленькое изображениеНа фиг. 51.6 показан пример поведения различных видов волн в Земле. Два сорта волн обозначены различными значками. Если в каком-то месте (назовем его «источник») произошло землетрясение, то поперечные и продольные волны, идущие по прямому пути, придут на станцию в разные моменты времени. Кроме того, возникнут отражения от границ неоднородности, дающие в результате другие пути и времена. Подобные исследования показали, что у Земли есть некое ядро, не проводящее поперечных волн. Однако даже если станция расположена диаметрально противоположно источнику, то поперечные волны все же приходят, но с неправильной фазой. Это получается оттого, что поперечные волны, падающие наклонно на поверхность, разделяющую два вещества, всегда рождают две новые волны: поперечную и продольную. Но внутри ядра Земли поперечные волны не распространяются (по крайней мере в отличие от продольных волн для них этого не обнаружено). Затем на границе ядра оба вида волн возникают вновь и попадают на станцию.
 
Именно по поведению волн, вызванных землетрясениями, было обнаружено, что поперечные волны не могут распространяться в некоторой сфере внутри Земли. Это означает, что центр Земли жидкий в том смысле, что он не проводит поперечных волн. Изучение землетрясений — это единственный источник наших сведений о внутреннем строении Земли. Таким образом, в результате большого числа наблюдений на различных станциях в период многих землетрясений были выяснены все детали; известно все: скорости, кривые и т. д. Мы знаем скорости различных сортов волн на любой глубине. А зная это, мы, следовательно, можем выяснить, каковы собственные гармоники Земли, ибо нам известна скорость распространения звуковых волн: другими словами, известны упругие свойства на любой глубине. Предположим, что мы приплюснули земной эллипсоид и затем отпустили его. Задача определения периода и формы свободных колебаний сводится просто к вопросу о суперпозиции волн, идущих по эллипсоиду. Мы уже выяснили, что при подобном возмущении возникает множество гармоник, начиная от низшей, которая для Земли эллипсоидальна, и вплоть до более высоких и более сложных.

Чилийское землетрясение в мае 1960 г. произвело такой «шум», что его эхо много раз обошло вокруг Земли. Как раз к этому времени были изготовлены новые высокочувствительные сейсмографы, с помощью которых определялись основные гармоники Земли и сравнивались с величинами, вычисленными из теории звука по известным скоростям, найденным из других независимых землетрясений. Результат этого эксперимента показан на фиг. 51.7, где отложена сила сигнала в зависимости от его частоты (фурье-анализ). Заметьте, что одни из принимаемых частот оказывались более сильными, чем другие; наблюдались очень четкие максимумы. Это и есть собственные частоты Земли, поскольку они являются главными частотами ее колебаний.

Маленькое изображение 

Иными словами, если все движение Земли сводится к суперпозиции множества различных гармоник, то можно надеяться, что запись нерегулярных толчков на любой станции даст одну и ту же суперпозицию многих частот. Если проанализировать это в терминах частот, то мы сможем определить характеристические частоты Земли. Тонкие вертикальные линии на рисунке изображают рассчитанные частоты, и мы видим замечательное согласие, убеждающее нас, что теория звука вполне работает и внутри Земли.

Маленькое изображениеОчень интересный факт обнаруживается на фиг. 51.8, где представлены очень точные измерения (с еще большим разрешением) низшей эллипсоидальной гармоники. Заметьте, что здесь не один, а два немного отличающихся максимума: первый — с периодом 54,7 мин и второй — 53,1 мин. Природа этих двух максимумов не была известна, когда они были обнаружены, хотя с тех пор ее могли найти. Существуют по крайней мере два правдоподобных объяснения. Одно из них — это возможная асимметрия в распределении вещества Земли, которая может дать два подобных максимума. Другое, еще более интересное объяснение состоит в следующем. Вообразите волны, идущие от источника вокруг Земли в двух направлениях. Если мы в уравнениях движения учтем эффект вращения Земли, которым обычно пренебрегали при анализе, то скорости этих волн окажутся разными. Движение во вращающейся системе из-за действия кориолисовой силы изменяется, и это может вызвать наблюдаемое расщепление.
 
Коротко о методе получения этих кривых. На сейсмографе мы записываем не зависимость амплитуды от частоты, а перемещение как функцию времени, причем всегда какой-то очень неправильной и причудливой формы.
 
Чтобы найти из нее долю различных синусообразных волн для всех частот, мы уже знаем, что нужно делать. Фокус состоит в умножении полученных данных на синусообразную волну данной частоты и интегрировании, т. е. усреднении; при этом усреднении все другие частоты исчезают.
 
Таким образом, на рисунках фактически показаны графики интегралов от произведения полученных данных на синусообразные волны с различным числом периодов в минуту.



СМОТРИТЕ ТАКЖЕ:


Социальные комментарии Cackle


 
 
© All-Физика, 2009-2024
При использовании материалов сайта ссылка на www.all-fizika.com обязательна.