На главную
Физика - одна из самых удивительных наук! Физика столь интенсивно развивается, что даже лучшие педагоги сталкиваются с большими трудностями, когда им надо рассказать о современной науке. Данный ресурс поможет эффективно и интересно изучать физику. Учите физику!
   

Обучение и материалы
Физический справочник
Формулы по физике
Шпаргалки по физике
Энциклопедия
Репетиторы по физике
Работа для физиков
Быстрый устный счет
Виртуальные лабораторные
Опыты по физике
ЕГЭ онлайн
Онлайн тестирование
Ученые физики
Необъяснимые явления
Ваша реклама на сайте
Разное
Контакты
Спецкурс
Фейнмановские лекции

В мире больших скоростей

Введение в теорию относительности

Лекции по биофизике
Лекции по ядерной физике
Ускорение времени...
Лазеры
Нанотехнологии
Книги
полезное
Смешные анекдоты о физике
Готовые шпоры по физике
Физика в жизни
Ученые и деньги
Нобелевские лауреаты
Фото
Видео
Карта сайта
На заметку
Если вам понравился сайт, предлагаем разместить нашу кнопку
Кнопка сайта All-fizika.com
Дополнительно
Компьютерные программы
по физике
Программы по физике


Физика и юмор
Физика и юмор


Онлайн тестирование
по физике
Онлайн тестирование по физике



-









Коллоидные частицы в электролите

Обратимся к другому явлению, когда местоположение зарядов определяется потенциалом, создаваемым в какой-то степени самими зарядами. Такой эффект существен для поведения коллоидов. Коллоид — это взвесь маленьких заряженных частичек в воде. Хотя эти частички и микроскопические, но по сравнению с атомом они все же очень велики. Если бы коллоидные частицы не были заряжены, они бы стремились коагулировать (слиться) в большие комки; но, будучи заряженными, они отталкиваются друг от друга и остаются во взвешенном состоянии. Если в воде растворена еще соль, то она диссоциирует (расползается) на положительные и отрицательные ионы. (Такой раствор ионов называется электролитом.) Отрицательные ионы притягиваются к коллоидным частицам (будем считать, что их заряды положительны), а положительные — отталкиваются. Нам нужно узнать, как ионы, окружающие каждую частицу коллоида, распределены в пространстве.
 
Чтобы мысль была яснее, рассмотрим только одномерный случай. Представим себе коллоидную частицу в виде очень большого (по сравнению с атомом!) шара; тогда мы можем малую часть ее поверхности считать плоскостью. (Вообще, пытаясь понять новое явление, лучше разобраться в нем на чрезвычайно упрощенной модели; и только потом, поняв суть проблемы, стоит браться за более точные расчеты.)
 
Предположим, что распределение ионов создает плотность зарядов ρ(х) и электрический потенциал φ, связанные электростатическим законом v2φ = –ρ/ε0, или в одномерном случае законом

Маленькое изображение
 

Как бы распределились ионы в таком поле, если бы потенциал подчинялся этому уравнению? Узнать это можно при помощи принципов статистической механики. Вопрос в том, как определить φ, чтобы вытекающая из статистической механики плотность заряда тоже удовлетворяла бы условию (7.28)?
 
Согласно статистической механике (см. вып. 4, гл. 40), частицы, пребывая в тепловом равновесии в поле сил, распределяются так, что плотность n частиц с координатой х дается формулой

Маленькое изображение
 

где U(x) — потенциальная энергия, k — постоянная Больцмана, а Т — абсолютная температура.
 
Предположим, что у всех ионов один и тот же электрический заряд, положительный или отрицательный. На расстоянии х от поверхности коллоидной частицы положительный ион будет обладать потенциальной энергией

Маленькое изображение
 

Плотность положительных ионов тогда равна

Маленькое изображение
 

а плотность отрицательных

Маленькое изображение
 

Суммарная плотность заряда

Маленькое изображение
 

Подставляя в (7.28),  увидим,  что потенциал φ должен удовлетворять уравнению

Маленькое изображение
 

Это уравнение решается в общем виде [помножьте обе его части на 2(dφ/dx) и проинтегрируйте по х], но, продолжая упрощать задачу, мы ограничимся здесь только предельным случаем малых потенциалов или высоких температур Т. Малость φ отвечает разбавленному раствору. Показатель экспоненты тогда мал, и можно взять

Маленькое изображение
 

Уравнение (7.31) дает

Маленькое изображение
 

Заметьте, что теперь в правой части стоит знак плюс (решение не колебательное, а экспоненциальное).
 
Общее решение (7.33) имеет вид

Маленькое изображение
 

где

Маленькое изображение
 

Постоянные А и В определяются из добавочных условий. В нашем случае В должно быть нулем, иначе потенциал для больших х обратится в бесконечность. Итак,

Маленькое изображение
 

Маленькое изображениегде А — потенциал при х=0 на поверхности коллоидной частицы.
 
Потенциал убывает в е раз при удалении на D (фиг. 7.7). Число D называется дебаевской длиной; это мера толщины ионной оболочки, окружающей в электролите каждую большую заряженную частицу. Уравнение (7.36) утверждает, что оболочка становится тоньше по мере увеличения концентрации ионов (n0) или уменьшения температуры.
 
Постоянную А в (7.36) легко получить, если известен поверхностный заряд σ на поверхности заряженной частицы. Мы знаем, что

Маленькое изображение
 

Но Е это также градиент φ

Маленькое изображение
 

откуда получается

Маленькое изображение
 

Подставив этот результат в (7.36), мы получим (положив х=0), что потенциал коллоидной частицы равен

Маленькое изображение
 

Заметьте, что этот потенциал совпадает с разностью потенциалов в конденсаторе с промежутком D и поверхностной плотностью заряда σ.
 
Мы сказали, что коллоидные частицы не слипаются вследствие электрического отталкивания. Но теперь мы видим, что невдалеке от поверхности частицы из-за возникающей вокруг нее ионной оболочки поле спадает. Если бы оболочка стала достаточно тонкой, у частиц появился бы шанс столкнуться друг с другом. Тогда они бы слиплись, коллоид бы осадился и выпал из жидкости. Из нашего анализа ясно, что после добавления в коллоид подходящего количества соли начнется выпадение осадка. Этот процесс называется «высаливанием коллоида».
 
Другой интересный пример — это влияние растворения соли на осаждение белка. Молекула белка — это длинная, сложная и гибкая цепь аминокислот. На ней там и сям имеются заряды, и временами заряд какого-то одного знака, скажем отрицательного, распределяется вдоль всей цепи. В результате взаимного отталкивания отрицательных зарядов белковая цепь распрямляется. Если в растворе имеются еще другие такие же молекулы-цепочки, то они не слипаются между собой вследствие того же отталкивания. Так возникает в жидкости взвесь молекул-цепочек. Но стоит добавить туда соли, как свойства взвеси изменятся. Уменьшится дебаевская длина, молекулы начнут сближаться и свертываться в спирали. А если соли много, то молекулы белка начнут выпадать в осадок. Существует множество других химических явлений, которые можно понять на основе анализа электрических сил.



СМОТРИТЕ ТАКЖЕ:


Социальные комментарии Cackle


 
 
© All-Физика, 2009-2024
При использовании материалов сайта ссылка на www.all-fizika.com обязательна.


-->