На главную
Физика - одна из самых удивительных наук! Физика столь интенсивно развивается, что даже лучшие педагоги сталкиваются с большими трудностями, когда им надо рассказать о современной науке. Данный ресурс поможет эффективно и интересно изучать физику. Учите физику!
   

Обучение и материалы
Физический справочник
Формулы по физике
Шпаргалки по физике
Энциклопедия
Репетиторы по физике
Работа для физиков
Быстрый устный счет
Виртуальные лабораторные
Опыты по физике
ЕГЭ онлайн
Онлайн тестирование
Ученые физики
Необъяснимые явления
Ваша реклама на сайте
Разное
Контакты
Спецкурс
Фейнмановские лекции

В мире больших скоростей

Введение в теорию относительности

Лекции по биофизике
Лекции по ядерной физике
Ускорение времени...
Лазеры
Нанотехнологии
Книги
полезное
Смешные анекдоты о физике
Готовые шпоры по физике
Физика в жизни
Ученые и деньги
Нобелевские лауреаты
Фото
Видео
Карта сайта
На заметку
Если вам понравился сайт, предлагаем разместить нашу кнопку
Кнопка сайта All-fizika.com
Дополнительно
Компьютерные программы
по физике
Программы по физике


Физика и юмор
Физика и юмор


Онлайн тестирование
по физике
Онлайн тестирование по физике



-









Механическая и электрическая энергии

Теперь мы хотим пояснить, почему энергия Uмех, о которой говорилось в предыдущем параграфе, не настоящая энергия, связанная с постоянными токами, почему у нее нет прямой связи с полной энергией всей Вселенной. Правда, мы подчеркнули, что ею можно пользоваться как энергией, когда вычисляешь силы из принципа виртуальной работы, при условии, что ток в петле (и все прочие токи) не меняется. Посмотрим теперь, почему же все  так  выходит.
 
Представим, что петля на фиг. 15.2 движется в направлении +х, а ось z примем за направление В. Электроны проводимости на стороне 2 будут испытывать действие силы, толкающей их вдоль провода, в направлении у. Но в результате их движения по проводу течет электрический ток и имеется составляющая скорости vy в том же направлении, в котором действует сила. Поэтому над каждым электроном каждую секунду будет производиться работа Fy vy , где vy — компонента скорости электрона, направленная вдоль провода. Эту работу, совершаемую над электронами,   мы   назовем   электрической.   Оказывается,  что когда петля движется в однородном поле, то полная электрическая работа равна нулю, потому что на одной части петли работа положительная, а на другой — равная ей отрицательная. Но при движении контура в неоднородном поле это не так — тогда остается какой-то чистый избыток одной работы над другой. Вообще-то эта работа стремится изменить поток электронов, но если он поддерживается неизменным, то энергия поглощается или высвобождается в батарейке или в другом источнике, сохраняющем ток постоянным. Вот именно эта энергия и не учитывалась, когда мы вычисляли Uмех в (15.9), потому что в наши расчеты входили только механические силы, действующие на провод.
 
Вы можете подумать: но сила, действующая на электроны, зависит от того, насколько быстро движется провод; быть может, если бы провод двигался достаточно медленно, этой электрической энергией можно было бы вообще пренебречь. Действительно, скорость, с какой высвобождается электрическая энергия, пропорциональна скорости провода, но все же полная выделенная энергия пропорциональна к тому же еще и времени, в течение которого проявлялась эта скорость. В итоге полная выделенная электрическая энергия пропорциональна произведению скорости на время, а это как раз и есть пройденное расстояние. Каждому пройденному в поле расстоянию отвечает заданное, и притом одно и то же, количество электрической работы.
 
Возьмем кусок провода единичной длины, по которому течет ток /. Провод движется перпендикулярно самому себе и магнитному полю В со скоростью  vпровод. Благодаря наличию тока сами электроны обладают скоростью дрейфа vдрейф вдоль провода. Компонента магнитной силы, действующей на каждый электрон в направлении дрейфа, равна qe vпровод В. Значит, скорость, с какой производится электрическая работа, равна Fvдрейф = (qe vпровод В) vдрейф. Если на единице длины провода имеется N проводящих электронов, то вся величина электрической   работы,   производимой   в   секунду,   такова:

Маленькое изображение
 

Но Nqevдрейф равно току / в проводе, так что

Маленькое изображение
 

И поскольку ток поддерживается неизменным, то силы, действующие на электроны проводимости, не ускоряют их; электрическая энергия переходит не к электронам, а к тому источнику, который сохраняет силу тока постоянной.
 
Но заметьте, что сила, действующая на провод, равна IB; значит, IВvпровод  — это механическая работа, выполняемая над проводом в единицу времени, dUмех /dt = IВvпровод. Отсюда мы заключаем, что механическая работа перемещения провода в точности равна электрической работе, производимой над источником тока, так что энергия петли остается постоянной!
 
Это не случайность. Это следствие закона, с которым мы уже знакомы. Полная сила, действующая на каждый из зарядов в проводе, равна

Маленькое изображение
 

Скорость, с которой производится работа, равна

Маленькое изображение
 

Маленькое изображениеЕсли электрического поля нет, то остается только второе слагаемое, а оно всегда равно нулю. Позже мы увидим, что изменение магнитных полей создает электрические поля, так что наши рассуждения применимы лишь к проводам в постоянных магнитных полях.
 
Но тогда почему же принцип виртуальной работы дает правильный ответ? Потому, что пока мы не учитывали полную энергию Вселенной. Мы не включали в рассмотрение энергию тех токов, которые создают магнитное поле, с самого начала присутствующее в наших  рассуждениях.
 
Но представим себе полную систему, наподобие изображенной на фиг. 15.3,а, где петля с током / вдвигается в магнитное поле В1, созданное током /2 в катушке. Ток I1, текущий по петле, тоже будет создавать какое-то магнитное поле В2 близ катушки. Если петля движется, то поле В2 изменяется. В следующей главе мы увидим, что изменяющееся магнитное поле создает поле Е, и это поле действительно начнет действовать на заряды в катушке. Эту энергию мы обязаны включить в наш сводный баланс энергий.
Мы, конечно, могли бы подождать говорить об этом новом вкладе в энергию до следующей главы, но уже сейчас можно оценить его, если применить соображения принципа относительности. Приближаем петлю к неподвижной катушке и знаем, что электрическая энергия петли в точности равна и противоположна по знаку произведенной механической работе. Иначе говоря,

Маленькое изображение
 

Теперь предположим, что мы смотрим на происходящее с другой точки зрения: будем считать, что петля покоится, а катушка приближается к ней. Тогда катушка движется в поле, созданном петлей. Те же рассуждения приведут к выражению

Маленькое изображение
 

Механическая энергия в обоих случаях одна и та же — она определяется только силой, действующей между двумя контурами.
 
Сложение двух  уравнений дает

Маленькое изображение
 

Полная энергия всей системы равна, конечно, сумме двух электрических энергий и взятой один раз механической энергии. В   итоге  выходит

Маленькое изображение
 

Полная энергия всей системы — это на самом деле Uмeх со знаком минус. Если нам нужна, скажем, полная энергия магнитного диполя, то следует писать

Маленькое изображение
 

И только тогда, когда мы потребуем, чтобы все токи оставались постоянными, можно использовать лишь одну из частей энергии Uмех (всегда равную истинной энергии со знаком минус) для вычисления механических сил. В более общих задачах надо соблюдать осторожность, чтобы не забыть ни одной из энергий. Сходное положение наблюдалось и в электростатике. Мы показали там, что энергия конденсатора равна Q2/2C. Когда мы применяем принцип виртуальной работы, чтобы найти силу, действующую между обкладками конденсатора, то изменение энергии равно    Q2/2, умноженному на изменение в 1/С, т. е.

Маленькое изображение
 

А теперь предположим, что нам надо было бы подсчитать работу, затрачиваемую на сближение двух проводников, но при другом условии — что напряжение между ними остается постоянным. Тогда правильную величину силы мы могли бы получить из принципа виртуальной работы, если бы поступили немного искусственным образом. Раз Q = CV, то полная энергия равна 1/2 СV2. Но если бы мы ввели условную энергию, равную   –1/2 СV2, то принцип виртуальной работы можно было бы применить для получения сил, полагая изменение этой условной энергии равным механической работе (это при   условии,  что  напряжение  V  считается постоянным). Тогда

Маленькое изображение
 

а это то же самое, что написано в уравнении (15.14). Мы получаем правильный ответ, хотя пренебрегаем работой, которую электрическая система тратит на постоянное поддержание напряжения. И здесь опять электрическая энергия ровно вдвое больше механической и имеет обратный знак.
 
Итак, если мы ведем расчет искусственно, пренебрегая тем фактом, что источник потенциала должен тратить работу на то, чтобы напряжение оставалось неизменным, то все равно мы приходим к правильному результату. Это в точности соответствует положению дел в магнитостатике.



СМОТРИТЕ ТАКЖЕ:


Социальные комментарии Cackle


 
 
© All-Физика, 2009-2024
При использовании материалов сайта ссылка на www.all-fizika.com обязательна.


-->